46
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Statistical mechanics approach to inhomogeneous van der Waals fluids

Pages 1165-1177 | Received 01 Jun 2006, Accepted 01 Oct 2006, Published online: 11 Jan 2007
 

Abstract

A general methodology is proposed to formulate density functional approximation (DFA) for inhomogeneous van der Waals fluids. The present methodology needs as input only a hard sphere DFA, second order direct correlation function (DCF) and pressure of coexistence bulk fluid, and therefore can be applicable to both supercitical and subcritical temperature regions. As illustrating example, the present report combines a recently proposed hard sphere “Formally exact truncated non-uniform excess Helmholtz free energy density functional approximation” with the present methodology, and applies the resultant DFA to calculate density profile of the inhomogeneous Lennard-Jones (LJ) fluid in coexistence with a bulk LJ fluid being situated at “dangerous” regions, i.e. the coexistence bulk state is near the critical temperature or the gas-liquid coexistence line. The theoretical predictions are in very good agreement with the recent simulation results, it is concluded that the present DFA is a globally excellent one. A discussion is given why the present methodology can lead to so excellent DFA.

Acknowledgements

The author would like to thank the reviewers for helpful comments. This project is supported by the National Natural Science Foundation of China (20673150).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.