26
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Thermal-stability and tensile properties of two single-walled Si–H nanotubes

Pages 939-944 | Received 01 Dec 2006, Accepted 01 Jun 2007, Published online: 27 Jul 2010
 

Abstract

The Molecular dynamics (MD) method was used to predict the thermal-stability and tensile properties of two single-walled Si nanotubes that are hydrogenated outside and both inside and outside respectively, i.e. the Sio–H and Siio–H nanotubes. Further, the axial-tensile properties of the two Si–H nanotubes were discussed by comparison with one (14,14) carbon nanotube. The obtained results show that: (1) the two Si–H nanotubes both have the Si skeletons with the structure similar to the {110} planes of single-crystal silicon, and they can stably exist only at the temperature lower than 200 and 125 K respectively and (2) the Sio–H and Siio–H nanotubes, respectively, have the tensile strength of 4.0 and 1.2 GPa as well as the fracture strain of 0.35 and 0.32; both their tensile strength and fracture strain are much lower than the corresponding ones of the (14,14) carbon-tube.

Acknowledgements

This research is supported by NUAA found (Y05-0103).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.