136
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Comparison of perfluoropolyethers and n-alkanes under shear via nonequilibrium molecular dynamics simulation

, , &
Pages 231-242 | Received 11 Dec 2007, Accepted 13 Feb 2008, Published online: 28 May 2008
 

Abstract

The structural, energetic and rheological properties of seven short-chain perfluoropolyethers (PFPEs) under planar Couette flow have been investigated through nonequilibrium molecular dynamics (NEMD) simulation. The full parameter set of a revised universal force field (A.K. Rappe et al., UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc. 114 (1992), p. 10024) is presented for linear PFPEs, allowing for multiple types of fluorine atoms depending upon their local environment (B. Jiang et al., Comparison of rheological properties of short-chain PFPEs through simulation and experiment. Mol. Simul. 33 (2007), p. 871). The NEMD simulations quantitatively reproduce experimental zero-shear-rate viscosities for five PFPEs with varying molecular architectures. Rheological properties and structural variations of PFPEs are investigated as functions of flow strength, temperature and chain architecture. We find the following general relationships between PFPE architecture and viscosity: (i) longer chain lengths increase the viscosity, (ii) ether linkages in the backbone decrease the viscosity and (iii) longer (CF2) n units between ether linkages increase the viscosity. These effects are all explained in terms of chain flexibility. Additionally, we report the structural and rheological properties of four short-chain PFPEs with identical monomeric units but with different chain lengths using NEMD simulation of planar Couette flow. We explain the behaviour of the longer PFPEs due to the increased relative flexibility of longer chains over shorter chains. Finally, we provide a quantitative comparison of the structural and energetic properties of relatively rigid PFPEs and relatively flexible alkanes as a function of chain length. In general, alkanes respond to the flow field with a combination of alignment and extension. PFPEs respond with greater alignment but less extension. An increase in chain length enhances the degree of alignment at high shear rates and enhances the degree of extension at intermediate shear rates.

Acknowledgements

This research has been supported by the Air Force Office of Scientific Research through contract # FA 9550-05-1-0342. Through the University of Tennessee Computational Science Initiative, the authors used resources of the Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the DOE under Contract DE-AC05-00OR22725. The authors acknowledge the experimental synthesis and helpful discussions of Dr Jamie Adcock in the Department of Chemistry at University of Tennessee, Knoxville. The authors also acknowledge discussions of Dr Chunggi Baig in the Department of Chemical Engineering at the University of Patras, Greece.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.