99
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

The activity coefficient of high density systems with hard-sphere interactions: the application of the IGCMC method

&
Pages 111-117 | Received 27 Mar 2009, Accepted 15 Jun 2009, Published online: 10 Sep 2009
 

Abstract

The inverse grand-canonical Monte Carlo (IGCMC) technique is used to calculate the activity coefficients of the following hard-sphere systems: one-component fluid, binary mixture and solvent primitive model (SPM) electrolyte. The calculations for a one-component fluid are performed at different densities. The components of a binary mixture differ in diameters (300 and 500 pm) with the results being presented for different density and composition of a mixture. For the SPM model, simulations are performed for a 1:1 electrolyte at different electrolyte concentrations at the packing fraction equal to 0.3. Ions and solvent molecules of the same or different sizes are considered. The results are compared with those reported by Adams (one-component fluid), with those calculated using the Ebeling and Scherwinski equation (one-component fluid and binary mixture) and with the predictions from the symmetric Poisson–Boltzmann theory and the mean spherical approximation (SPM electrolyte).

Acknowledgements

The authors are very grateful to Professors C.W. Outhwaite and L.B. Bhuiyan for their comments and suggestions and for making available their SPB program. Financial support from Adam Mickiewicz University, Faculty of Chemistry, is appreciated.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.