241
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Theoretical investigation of the use of doped graphene as a membrane support for effective CO removal in hydrogen fuel cells

&
Pages 1061-1071 | Received 19 Mar 2012, Accepted 01 May 2012, Published online: 20 Jul 2012
 

Abstract

Carbon monoxide poisoning of the anode catalyst is currently a big problem facing the use of hydrogen fuel cells. This study uses density functional theory to model the interaction between a filter membrane and carbon monoxide to optimise the removal of CO from the H2 feed gas. The membranes studied are graphene/metal surfaces of nickel, platinum and iridium/gold over undoped or boron-, nitrogen- or oxygen-doped graphene. It was found that graphene doping improved the efficiency of the filter membrane in hydrogen fuel cells because addition of a dopant increases metal/graphene binding and causes metal/H2 binding to become negligible while only decreasing metal/CO binding slightly. Platinum and iridium/gold systems show slightly stronger binding to graphene and CO than nickel systems. However, nickel is a non-precious metal, so membranes produced with this active centre could lead to a reduction in the cost of fuel cell production by increasing the lifetime of the platinum anode catalyst.

Acknowledgements

This study was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Defense and Security Research Institute-Royal Military College Defense Academic Research (DSRI-RMC DAR) Programme and the Royal Military College of Canada.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.