365
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Local description of surface tension through thermodynamic and mechanical definitions

&
Pages 603-611 | Received 28 Jun 2012, Accepted 28 Nov 2012, Published online: 06 Mar 2013
 

Abstract

For a half century, the calculation of local pressure components and surface tension along the normal to the surface have been carried out using mechanical definitions. This has led to three principal definitions: Irving and Kirkwood, Harasima and Kirkwood–Buff. Recently, thermodynamic definitions based on the energy calculation have been introduced to compute the local properties. We propose here to compare both definitions for Lennard–Jones particles interacting through a truncated and shifted potential. For this, two locations of the pairwise interaction involved in the calculation of the local pressure components and surface tension within the thermodynamic routes are investigated. For the first time, we show that the thermodynamic definition suffers, to one least degree with respect to the mechanical definition, from the same ambiguity. From a numerical standpoint, thermodynamic definition is more simple and less computationally expensive. Therefore, with the complicated potential, the thermodynamic approach appears to be most interesting to compute macroscopic and local pressure and surface tension.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.