348
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

The effect of ruthenium on the performance of porphyrin dye and porphyrin–fullerene dyad solar cells predicted by DFT and TD-DFT calculations

, &
Pages 689-699 | Received 18 Sep 2012, Accepted 04 Dec 2012, Published online: 06 Mar 2013
 

Abstract

The effect of ruthenium on the performance of porphyrin dye and porphyrin–fullerene (PF) dyad solar cells is investigated by using density functional theory and time-dependant density functional theory calculations. The results reveal that ruthenium facilitates rapid electron injection from porphyrin to fullerene, narrows the band gaps of porphyrin dye and PF dyad and alters the density of states near the corresponding Fermi levels. The HOMOs are localised on the donor moieties and the LUMOs on the acceptor moieties. The donor and acceptor dyads form good donor–acceptor pairs for photo-to-current conversion under the effect of ruthenium. HOMOs of porphyrin and ruthenium metalloporphyrin dyes fall within the (TiO2)60 and Ti38O76 gaps, and support the issue of typical interfacial electron transfer reaction. The calculated transition energies of porphyrin are almost insensitive to ethanol solvent effects. The introduction of ruthenium to the porphyrin ring leads to more active nonlinear optical performance, stronger response to the external electric field and induces higher photo-to-current conversion efficiency. Moreover, ruthenium shifts the absorption bands of porphyrin and makes it a potential candidate for harvesting light for photovoltaic applications.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.