749
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

Modelling hydrogen bonds in NN-dimethylformamide

, , &
Pages 875-881 | Received 01 Oct 2012, Accepted 06 Feb 2013, Published online: 09 Apr 2013
 

Abstract

N, N-dimethylformamide (DMF) is a ‘universal’ solvent with the simplest amide structure. DMF has different interactions with many polymers and biomolecules. It is therefore necessary to study systematically the interactions in DMF itself first. In this study, both FT-IR and two molecular theoretical methods (MP2 and DFT/B3LYP) were used to study various hydrogen bonding interactions in DMF molecules based on its weak H-bonding donors CH/CH3 and strong H-bonding acceptor C = O. The possible H-bonding donors and acceptors in DMF molecules were first analysed followed by modelling the effect of different structural environments on vC = O bands in infrared spectra. Finally, H-bonding properties including distance, angles and the energy as well as the probability of H-bonding patterns were obtained. The results showed that there exist five possible different weak types of H-bonding dimers; among them, three dimers consist of a pair of weak H-bonds, whereas two other dimers have two pairs of H-bonds, leading to 14 (including eight different) H-bonds. Two types of dimers were dominant, whereas three others can be omitted.

Acknowledgements

This study were supported by the National Nature Science Foundation (21074030) and Henan Nature Science Foundation (1023004101).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.