216
Views
8
CrossRef citations to date
0
Altmetric
Articles

Molecular simulation study of assembly of DNA-grafted nanoparticles: effect of bidispersity in DNA strand length

, &
Pages 1085-1098 | Received 22 May 2013, Accepted 13 Sep 2013, Published online: 23 Oct 2013
 

Abstract

In this paper, we use molecular dynamics simulations to study the assembly of DNA-grafted nanoparticles to demonstrate specifically the effect of bidispersity in grafted DNA strand length on the thermodynamics and structure of nanoparticle assembly at varying number of grafted single-stranded DNA (ssDNA) strands and number of guanine/cytosine (G/C) bases per strand. At constant number of grafted ssDNA strands and G/C nucleotides per strand, as bidispersity in strand lengths increases, the number of nanoparticles that assemble as well as the number of neighbours per particle in the assembled cluster increases. When the number of G/C nucleotides per strand in short and long strands is equal, the long strands hybridise with the other long strands with higher frequency than the short strands hybridise with short/long strands. This dominance of the long strands leads to bidisperse systems having similar thermodynamics to that in corresponding systems with monodisperse long strands. Structurally, however, as a result of long–long, long–short and short–short strand hybridisation, bidispersity in DNA strand length leads to a broader inter-particle distance distribution within the assembled cluster than seen in systems with monodisperse short or monodisperse long strands. The effect of increasing the number of G/C bases per strand or increasing the number of grafted DNA strands on the thermodynamics of assembly is similar for bidisperse and monodisperse systems. The effect of increasing the number of grafted ssDNA strands on the structure of the assembled cluster is dependent on the extent of strand bidispersity because the presence of significantly shorter ssDNA strands among long ssDNA strands reduces the crowding among the strands at high grafting density. This relief in crowding leads to larger number of strands hybridised and as a result larger coordination number in the assembled cluster in systems with high bidispersity in strands than in corresponding monodisperse or low bidispersity systems.

Acknowledgements

The authors thank E. Jankowski for useful discussions regarding loop analysis. This work was partially supported by National Science Foundation under grant Number CBET-0930940.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.