652
Views
31
CrossRef citations to date
0
Altmetric
Articles

Sampling large conformational transitions: adenylate kinase as a testing ground

&
Pages 855-877 | Received 24 Dec 2013, Accepted 26 Apr 2014, Published online: 29 May 2014
 

Abstract

A fundamental problem in computational biophysics is to deduce the function of a protein from the structure. Many biological macromolecules such as enzymes, molecular motors or membrane transport proteins perform their function by cycling between multiple conformational states. Understanding such conformational transitions, which typically occur on the millisecond to second time scale, is central to understanding protein function. Molecular dynamics (MD) computer simulations have become an important tool to connect molecular structure to function, but equilibrium MD simulations are rarely able to sample on time scales longer than a few microseconds – orders of magnitudes shorter than the time scales of interest. A range of different simulation methods have been proposed to overcome this time-scale limitation. These include calculations of the free energy landscape and path sampling methods to directly sample transitions between known conformations. All these methods solve the problem to sample infrequently occupied but important regions of configuration space. Many path-sampling algorithms have been applied to the closed open transition of the enzyme adenylate kinase (AdK), which undergoes a large, clamshell-like conformational transition between an open and a closed state. Here we review approaches to sample macromolecular transitions through the lens of AdK. We focus our main discussion on the current state of knowledge – both from simulations and experiments – about the transition pathways of ligand-free AdK, its energy landscape, transition rates and interactions with substrates. We conclude with a comparison of the discussed approaches with a view towards quantitative evaluation of path-sampling methods.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.