326
Views
5
CrossRef citations to date
0
Altmetric
Proceedings of the 3rd International Conference on Molecular Simulation

Analysis of crystal growth of methane hydrate using molecular dynamics simulation

, , &
Pages 918-922 | Received 01 Apr 2014, Accepted 15 Oct 2014, Published online: 02 Dec 2014
 

Abstract

Methane hydrate is a crystalline compound with methane molecules enclosed in cages formed by hydrogen-bonded water molecules. Understanding the mechanism of nucleation and crystal growth from methane vapour and liquid water is important for all hydrate applications. However, processes near the water/methane interface are still unclear. In this work, we focused on the crystal growth of methane hydrate seeds located near the water/methane interface. We performed molecular dynamics (MD) simulation and analysed the crystal growth of the hydrate seed at the interface. New cages formed in the liquid water phase were stabilised when they shared faces with the hydrate seed. We also investigated the crystal growth rate as the time development of the number of methane molecules trapped in hydrate cages, based on the trajectory of the MD simulation. The calculated growth rate in the direction that covers the interface was 1.38 times that in the direction towards the inside of the water phase.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.