304
Views
7
CrossRef citations to date
0
Altmetric
Article

Development of a grand canonical-kinetic Monte Carlo scheme for simulation of mixtures

, &
Pages 993-1000 | Received 27 Oct 2015, Accepted 24 Dec 2015, Published online: 11 May 2016
 

Abstract

A rejection-free methodology-based kinetic Monte Carlo (kMC) method has been developed in the grand canonical ensemble to simulate fluid mixtures. It comprises two different moves: entropic displacement of a selected molecule (based on the Rosenbluth algorithm) in the volume space of the system, and exchange of molecules with the surroundings (insertion or deletion). These two moves are made sequentially with M displacement moves followed by one exchange. The displacement moves are treated as sub-NVT sequences within a grand canonical ensemble. The procedure for deletion or insertion of a molecule is either, based on the Rosenbluth algorithm, or on a direct comparison, in which the average activity of one component is compared with its specified activity. The components are chosen either with equal probability or with a probability proportional to their density. The implementation of rejection-free kMC is much simpler than the Metropolis importance sampling MC procedure, which requires three different types of move, all of which must be tested for acceptance or rejection. The new scheme has been evaluated by applying it to fluid argon and to an equimolar mixture of methane, ethane and propane.

Funding

This work was supported by the Australian Research Council [grant number DP160103540].

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.