441
Views
14
CrossRef citations to date
0
Altmetric
Articles

Interaction between lattice dislocations and low-angle grain boundaries in Ni via molecular dynamics simulations

&
Pages 1172-1178 | Received 30 Jan 2017, Accepted 12 Jul 2017, Published online: 26 Jul 2017
 

Abstract

Low-angle grain boundaries (LAGBs) may show up frequently as distinct dislocation products such as in the processes of work hardening, recovery and recrystallisation of metals and alloys. To reveal their mechanical behaviours, interactions between lattice dislocation and symmetric tilt and twist LAGBs are studied with molecular dynamics simulations. It is shown that dislocation reaction and slip transmission depend on the structure of LAGB, the character of incident dislocation and the particular glide planes inhabiting the incoming slip. For tilt LAGBs, a free slip-transmission process is identified where dislocations can be forced to penetrate through the boundary without inducing dislocation reaction. Otherwise, the incident slip tends to be trapped or absorbed by those intrinsic grain boundary dislocations. With increasing the applied strain, a number of dislocation reactions can be triggered, which may lead to indirect slip transmission across the boundary.

Acknowledgements

We acknowledge X.C. Liu, K. Lu and P. Gumbsch for discussions and their kind suggestions.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.