302
Views
12
CrossRef citations to date
0
Altmetric
Articles

Decomposition of CH4 hydrate: effects of temperature and salt from molecular simulations

, , & ORCID Icon
Pages 1220-1228 | Received 20 Nov 2017, Accepted 11 May 2018, Published online: 04 Jun 2018
 

ABSTRACT

We report a molecular simulation study to investigate the decomposition of CH4 hydrate. The decomposition is revealed to be stepwise from the outer to inner layers. Upon decomposition, the number of 51262 cages drops faster than that of 512 cages. CH4 molecules are released, dissolved in water, then enter gas phase; meanwhile, CH4 bubbles may form particularly at a high temperature. Based on the variations of potential energy, order parameter, cage number and density profile of CH4 at different temperatures (300, 330, 345 and 360 K) and NaCl concentrations (0, 0.6 and 1.8 M), the effects of temperature and salt are comprehensively examined. With increasing temperature, the decomposition in pure water is accelerated, whereas two opposite effects are observed in NaCl solution. At 330 K, the decomposition is retarded at a higher NaCl concentration, as attributed to the reduced CH4 solubility in NaCl solution and the participation of ions in cage formation; at 360 K, however, the decomposition is accelerated when NaCl concentration increases due to bubble formation. This simulation study provides microscopic insights into hydrate decomposition, which might be useful towards the optimisation of operating conditions for CH4 production from CH4 hydrate.

Additional information

Funding

We are grateful to the National University of Singapore for CENGas (Center of Excellence for Natural Gas) grant (R261-508-001-646/733).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.