177
Views
0
CrossRef citations to date
0
Altmetric
Articles

Nanoscrolls made from boron nitride nanotubes with helical fissure

, , , , , ORCID Icon & show all
Pages 346-353 | Received 26 Oct 2020, Accepted 31 Dec 2020, Published online: 08 Feb 2021
 

ABSTRACT

Molecular mechanics calculations demonstrate that boron-nitride nanoscrolls (BNNSs) can be formed from boron-nitride nanotubes (BNNTs) with cut helical fissure taking self-assembly principle. The assembly process and energy analyzations show that the van der Waals interaction between hexagonal boron-nitride (h-BN) layers provides the main driving force and the angle torsion of B-N bonds promotes the self-assembly of cut BNNTs. The pattern of fissure, the diameter and length of BNNTs can affect the self-assembly to form planer h-BN monolayer, single- or double-BNNSs. The results indicate that the helical pattern of fissure can ensure the formation of BNNSs and the length of BNNSs can be designed by controlling the density of cut fissure. The dependence of scroll-forming dynamics on temperature, and differences of self-assembly between BNNT and carbon nanotube with helical fissure are also explored. The method of cutting fissure may suggest a new way to assist isolated BNNTs to form BNNSs.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work is supported by the National Natural Science Foundation of China [grant number 11974153] and the Natural Science Foundation of Shandong Province, China [grant numbers ZR2019MA030, ZR2017JL007].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.