57
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Chemical Potential, Partial Enthalpy and Partial Volume of Mixtures by NPT Molecular Dynamics

Pages 227-238 | Received 01 May 1991, Accepted 01 May 1991, Published online: 23 Sep 2006
 

Abstract

Equilibrium NPT molecular dynamics computer simulations have been used to determine the chemical potential, partial enthalpy and partial volume of model Ar-Kr mixtures using newly devised non-intrusive particle insertion and particle swap techniques [P. Sindzingre et al. Chemical Physics, 129 (1989) 213]. In this report we examine, for the first time, in some detail the relative convergence statistics of the particle swap and particle insertion methods for these properties for binary Lennard-Jones (LJ) mixtures. Both species are represented by single-site Lennard-Jones pair potentials with Lorentz-Berthelot rules for the cross-species interactions. We show that, over the whole phase diagram and especially in the vicinity of the fluid-solid coexistence line, the particle swap method gives significantly better statistics than the particle insertion method for the difference in chemical potential of the two species, partial enthalpy and partial volume of each species. Also, we find that, using the particle swap method, the difference in the chemical potential converges more rapidly than the differences in the partial enthalpy and volume.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.