149
Views
30
CrossRef citations to date
0
Altmetric
Research Article

Role of Small Intestine Submucosa (SIS) as a Nerve Conduit: Preliminary Report

, MBA, BS, , BS, , BS & , PhD
Pages 339-344 | Published online: 09 Jul 2009
 

Abstract

The goal of peripheral nerve repair is to successfully direct the regenerating fibers into the environment of the distal terminus with minimal loss of fibers at the suture line. Successful nerve repair is dependent on sensory, motor, and autonomic axons making appropriate connection with their distal terminus. The subsequent results are dependent on parameters such as the location and extent of the injury, appropriateness of realignment of the injured nerve, and the surgical technique. Peripheral nerve repair using autograft material has several shortcomings, including donor site morbidity, inadequate return of function, and aberrant regeneration. Recent peripheral nerve research has focused on the generation of synthetic conduits for nerve guidance. Small intestine submucosa (SIS) is a biological material that might better address those outcomes and improve regeneration. Its unique properties appear to offer several advantages. The SIS graft acts as a natural conduit between the proximal and distal nerves, provides a favorable growth environment, and appears to lack antigenicity. This preliminary study to evaluate the integrity of sciatic nerve repair was conducted over a period of 90 d. Distally directed growth of the proximal nerve was demonstrated histologically. Further investigations to demonstrate the extent and integrity of this regeneration are underway.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.