Publication Cover
High Pressure Research
An International Journal
Volume 26, 2006 - Issue 3
109
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Experimental measurement of the electrical conductivity of pyroxenite at high temperature and high pressure under different oxygen fugacities

, , , &
Pages 193-202 | Received 13 Feb 2006, Published online: 26 Jan 2007
 

Abstract

Electrical conductivities of pyroxenite were measured between frequencies of 10−1 and 106 Hz in a multi-anvil pressure apparatus using different solid buffers (Ni+NiO, Fe+Fe3O4, Fe+FeO and Mo+MoO2) to stabilize the partial pressure of oxygen. The temperature ranged from 1073 to 1423 K (800 to 1200 °C) and the pressure from 1.0 to 4.0 GPa. We observe that: (1) the electrical conductivity (σ) of pyroxenite depends on frequency; (2) σ tends to increase with rising temperature (T), and Log σ and 1/T obey a linear Arrhenius relationship; (3) under control of the buffer Fe+Fe3O4, σ tends to decrease with rising pressure, nevertheless the activation enthalpy tends to increase. For the first time we have obtained values for the activation energy and activation bulk volume of the main charge carriers, which are (1.60±0.07) eV and (0.05±0.03) cm3/mol, respectively; (4) for a given pressure and temperature, σ tends to rise with increased oxygen fugacity, whereas the activation enthalpy and preexponential factor tend to decrease; and (5) the behaviour of the electrical conductivity at high temperature and high pressure can be reasonably interpreted by assuming that small polarons provide the dominant conduction mechanism in the pyroxenite samples.

Acknowledgements

We thank the anonymous reviewer for his very helpful comments and suggestions in the reviewing process. This research is financially supported by CAS Knowledge-Innovation Key Orientation Project (Grant No. KZCX3- SW-124), the National Natural Science Foundation of China (Grant No. 40573046 and 49674221), and CAS One- Hundred Talented Personnel Program.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,965.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.