984
Views
255
CrossRef citations to date
0
Altmetric
High Pressure and High Temperature Techniques

Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium

, , , , , , & show all
Pages 225-235 | Received 15 Feb 2008, Published online: 06 Oct 2008
 

Abstract

Laser heating plays an essential role for in-situ high pressure high temperature studies into the physical and chemical properties of materials in the diamond anvil cell (DAC) and minerals at conditions relevant to the Earth's deep interior. High temperature experiments in the multi-Mbar (over 100 GPa) pressure range require the use of very small samples and consequently the utmost stability and controllability of the laser heating is crucial. To accomplish this, we have modified the laser heating system at GSECARS employing newly developed beam shaping optics combined with two diode-pumped, single mode fiber lasers. Varying the settings of the laser heating system, we were able to shape the beam to almost any desired intensity profile and size on the surface of the sample in the DAC, including tight focus, flat top, trident and doughnut types. The advantages and excellent performance of the flat top laser heating (FTLH) technique were demonstrated in melting experiments on germanium in the DAC at pressures up to 40 GPa.

Acknowledgements

The authors thank G. Shen for the initial development of the laser heating system at GSECARS, N. Lazarz, F. Sopron and C. Pullins for technical support, D. Shim for help with data collection and S. Urakawa for discussion. This work was performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), and Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation - Earth Sciences (EAR-0622171) and Department of Energy - Geosciences (DE-FG02-94ER14466). Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,965.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.