Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 18, 2006 - Issue 10
304
Views
39
CrossRef citations to date
0
Altmetric
Research Article

Airflow Distribution in the Human Lung and its Influence on Particle Deposition

&
Pages 795-801 | Received 28 Nov 2005, Accepted 16 Feb 2006, Published online: 06 Oct 2008
 

Abstract

Realistic descriptions of lung geometry and physiology are the primary determinants of accurate predictions of inhaled particle deposition and distribution in the human lung. While there have been considerable efforts devoted to geometry reconstruction, little attention has been given to lung ventilation as applied to particle deposition applications. Models of lung ventilation based on pressure differential between extrathoracic airways and the pleural cavity were developed and used to calculate lobar and regional deposition of particles in the human lung. Local airflow in the lung varied in accordance with regional physiological properties. Calculations showed that airflow rate entering each lobe was different for compliant and noncompliant lung models and similar for uniform and nonuniform lung expansions. Regional particle deposition predictions were almost identical between the two compliance models. However, differences in lobar depositions were observed. The coupled lung ventilation and deposition models can be used in site-specific deposition predictions of inhaled particles in the human lungs.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 389.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.