Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 18, 2006 - Issue 10
139
Views
25
CrossRef citations to date
0
Altmetric
Research Article

Challenges in Validating CFD-Derived Inhaled Aerosol Deposition Predictions

Pages 781-786 | Received 15 Dec 2005, Accepted 13 Feb 2006, Published online: 06 Oct 2008
 

Abstract

Computational fluid dynamic (CFD) techniques have provided unprecedented opportunity for investigating inhaled particle deposition in realistic human airway geometries. Several recent articles describing local aerosol deposition predictions based upon “validated” CFD models have highlighted the challenges in validating local aerosol deposition predictions. These challenges include: (1) defining what is meant by validation; (2) defining appropriate experimental data for validation; and (3) determining when the agreement is not fortuitous. The term validation has numerous meanings, depending on the field and context in which it is used. For example, in computer programming it means the code executes as intended, to the experimentalist it means predicted results agree with matched experimental measurements, and to the risk assessor it implies that predictions using new parameters can be trusted. Based on the current literature it is not clear that a consensus exists for what constitutes a validated CFD model. It is also not clear what types of experimental data are needed or how closely the CFD input values and experimental conditions should be matched (similar or identical airway geometries, entrance airflow, or aerosol profiles) to validate CFD derived predictions. Due to the complexity of CFD computer codes and the multiplicity of deposition mechanisms, it is possible that total aerosol deposition may be accurately predicted and the resulting local particle deposition patterns are incorrect, or vice versa. Specific examples and suggestions for several challenges to experimentalists and modelers are presented.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 389.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.