Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 21, 2009 - Issue 10
155
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Co-cultivated damp building related microbes Streptomyces californicus and Stachybotrys chartarum induce immunotoxic and genotoxic responses via oxidative stress

, , , , &
Pages 857-867 | Received 20 May 2008, Accepted 02 Oct 2008, Published online: 21 May 2009
 

Abstract

Oxidative stress has been proposed to be one mechanism behind the adverse health outcomes associated with living in a damp indoor environment. In the present study, the capability of damp building-related microbes Streptomyces californicus and Stachybotrys chartarum to induce oxidative stress was evaluated in vitro. In addition, the role of oxidative stress in provoking the detected cytotoxic, genotoxic, and inflammatory responses was studied by inhibiting the production of reactive oxygen species (ROS) using N-acetyl-l-cysteine (NAC). RAW264.7 macrophages were exposed in a dose- and time-dependent manner to the spores of co-cultivated S. californicus and S. chartarum, to their separately cultivated spore-mixture, or to the spores of these microbes alone. The intracellular peroxide production and cytotoxicity were measured by flow cytometric analysis, nitric oxide production was analyzed by the Griess method, DNA damage was determined by the comet assay, and cytokine production was measured by an immunochemical ELISA (enzyme-linked immunosorbent assay). All the studied microbial exposures triggered oxidative stress and subsequent cellular damage in RAW264.7 macrophages. The ROS scavenger, NAC, prevented growth arrest, apoptosis, DNA damage, and cytokine production induced by the co-culture since it reduced the intracellular level of ROS within macrophages. In contrast, the DNA damage and cell cycle arrest induced by the spores of S. californicus alone could not be prevented by NAC. Bioaerosol-induced oxidative stress in macrophages may be an important mechanism behind the frequent respiratory symptoms and diseases suffered by residents of moisture damaged buildings. Furthermore, microbial interactions during co-cultivation stimulate the production of highly toxic compound(s) which may significantly increase oxidative damage.

Acknowledgments

The authors thank Heli Martikainen and Arja Kinnunen for their excellent technical assistance, Pasi Hakulinen for his assistance in statistical analyses, and Dr. Ewen MacDonald for revising the language of this manuscript.

Declaration of interest: The study was financially supported by the Graduate School in Environmental Health (SYTYKE) and the Research Fund of the Pulmonary Association Heli. The authors declare they have no competing financial interests.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 389.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.