Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 21, 2009 - Issue 12
350
Views
10
CrossRef citations to date
0
Altmetric
Research Article

An effort to test the embryotoxicity of benzene, toluene, xylene, and formaldehyde to murine embryonic stem cells using airborne exposure technique

, &
Pages 973-978 | Received 11 Oct 2008, Accepted 11 Dec 2008, Published online: 27 Jul 2009
 

Abstract

Benzene, toluene, xylene, and formaldehyde are well-known indoor air pollutants, especially after house decoration. They are also common pollutants in the working places of the plastic industry, chemical industry, and leather industry. It has been reported that these pollutants cause people to be irritated, sick, experience a headache, and be dizzy. They also have the potential to induce asthma, aplastic anemia, and leukemia, even cause abortion or fetus malformation in humans. In this study, the airborne toxicity of benzene, toluene, xylene, and formaldehyde to murine embryonic stem cells (mES cells) were tested using airborne exposure technique to evaluate the mES cell airborne exposure model on embryotoxicity prediction. Briefly, mES cells were cultured on Transwell inserts and were exposed to an airborne surrounding of test chemicals in a chamber for 1 h at 37°C. Cytotoxicity was determined using the MTT assay after further culture for 18 h at 37°C in normal medium. The airborne IC50 (50% inhibition concentration) of benzene, toluene, xylene, and formaldehyde derived from the fitted dose-response curves were 17,400 ± 1290, 16,000 ± 250, 4680 ± 500, and 620 ± 310 ppm, respectively. Formaldehyde was found to be the compound most toxic to mES cells compared to benzene homologues. The toxicity data had good correlation with the in vivo data. The results showed that the mES airborne exposure model may be used to predict embryotoxicity of volatile organic compounds.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 389.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.