Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 30, 2018 - Issue 13-14
189
Views
1
CrossRef citations to date
0
Altmetric
Research Article

An inhalational swine model for the characterization of physiological effects and toxicological profile associated with cyanide poisoning

, , ORCID Icon, &
Pages 509-518 | Received 10 Jul 2018, Accepted 06 Jan 2019, Published online: 13 Feb 2019
 

Abstract

Cyanides are highly toxic compounds that have been used as weapons of terrorism throughout history. Cyanide (CN) is acutely toxic by all routes of administration; however, inhalation is the main exposure route. To adequately test effective countermeasures against inhalational CN threats, robust and well-characterized animal models are needed. This paper describes the initial development of a hydrogen cyanide (HCN) exposure swine model for documenting the physiological effects and toxicological profile during and after HCN inhalation exposure. Animals were implanted with telemetry transmitters for heart rate (HR), blood pressure, and electrocardiogram monitoring, and vascular access ports for serial blood collections. Nine female swine were exposed to HCN concentrations of 500 ± 6 ppm while breathing parameters were monitored real-time. Inhaled HCN doses ranged from 2.02 to 2.83 mg/kg. Clinical signs included vocalization, agitation, salivation, respiratory distress and apnea. After HCN exposure initiation, systemic arterial pressure fell dramatically with a concomitant increase in HR. Blood samples were collected to determine CN blood levels using LC-MS/MS and blood gas analysis. In summary, the developed HCN inhalation swine model permitted documentation of the physiological effects associated with CN poisoning. This model could be used to evaluate potential CN medical countermeasures in the event of a public health emergency stemming from inhalational CN threats.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by an Internal Research and Development funding by Battelle.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 389.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.