535
Views
33
CrossRef citations to date
0
Altmetric
Articles

Transforming growth factor-β induces nerve growth factor expression in pancreatic stellate cells by activation of the ALK-5 pathway

, , , , , , , , , , , & show all
Pages 289-299 | Received 30 Sep 2009, Accepted 16 Jun 2009, Published online: 15 Sep 2009
 

Abstract

Nerve growth factor (NGF), a survival factor for neurons enforces pain by sensitizing nociceptors. Also in the pancreas, NGF was associated with pain and it can stimulate the proliferation of pancreatic cancer cells. Hepatic stellate cells (HSC) respond to NGF with apoptosis.

Transforming growth factor (TGF)-β, one of the strongest pro-fibrogenic activators of pancreatic stellate cells (PSC) induced NGF and its two receptors in an immortalized human cell line (ihPSC) and primary rat PSC (prPSC) as determined by RT-PCR, western blot, and immunofluorescence. In contrast to HSC, PSC expressed both NGF receptors, although p75NTR expression was weak in prPSC. In contrast to ihPSC TGF-β activated both Smad signaling cascades in prPSC. NGF secretion was diminished by the activin-like kinase (ALK)-5 inhibitor SB431542, indicating the predominant role of ALK5 in activating the NGF system in PSC. While NGF did not affect proliferation or survival of PSC it induced expression of Inhibitor of Differentiation-1.

We conclude that under conditions of upregulated TGF-β, like fibrosis, NGF levels will also increase in PSC which might contribute to pancreatic wound healing responses.

View correction statement:
Corrigendum

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,233.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.