65
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Enhanced Liposomal Vaccine Formulation and Performance: Simple Physicochemical and Immunological Approaches

, , , , &
Pages 215-227 | Received 01 May 2006, Accepted 30 May 2006, Published online: 09 Dec 2008
 

Abstract

The Dtxd (Diphtheria toxoid) was the first antigen encapsulated within liposomes, their adjuvant properties were discovered (their capacity to enhance the vaccine immunogenicity). The point here is not to propose a new method to prepare this lipossomal vaccine. The central idea is to give new dresses for old vaccines by using classical and well-established liposome preparation method changing only the encapsulation pH and the immunization protocol.

The most appropriate method of Dtxd encapsulation within liposome was based on lipid film hydration in 100 mM citrate buffer, pH 4.0. This was accompanied by changes on protein hydrophobicity, observed by CD and fluorescence spectroscopies. Whenever the Dtxd exposed its hydrophobic residues at pH 4.0, it interacted better with the lipossomal (observed by electrophoretic mobility) film than when its hydrophobic residues were buried (pH 9.0). The Dtxd partition coefficient in Triton-X114 and the acrylamide fluorescence quenching were also pH dependent. Both were bigger at pH 4.0 than at pH 9.0. The relationship protein structure and lipid interaction was pH dependent and now it can be easily maximized to enhance encapsulation of antigens in vaccine development.

Mice were primed with formulations containing 5 μg of Dtxd within liposomes prepared in pH 4.0 or 7.0 or 9.0. The boosters were done 38 or 138 days after the first immunization. The IgM produced by immediate response of all lipossomal formulations were higher than the control (free protein). The response patterns and the immune maturity were measured by IgG1 and IgG2a titrations. The IgG1 titers produced by both formulations at pH 4.0 and 7.0 were at least 22 higher than those produced by mice injected lipossomal formulation at pH 9.0. When the boosters were done, 138 days after priming the mice produced a IgG2a titer of 29 and the group that received the booster 30 days after priming produced a titer of 25. The strongest antibody production was the neutralizing antibody (245 higher than the control) produced by those mice injected with lipossomal formulation at pH 4.0 with the booster done 138 days after priming. The simple change on lipossomal pH formulation and timing of the booster enhanced both antibody production and selectivity.

Notes

Centers for Disease Control 1991 Diphtheria, tetanus, and pertussis: Recommendations for vaccine use and other preventive measures—Recommendations of the Immunization Practices Advisory Committee (ACIP). MMWR, 40(RR-10): 1–28.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,410.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.