91
Views
19
CrossRef citations to date
0
Altmetric
Research Article

The ‘Co-Delivery’ Approach to Liposomal Vaccines: Application to the Development of influenza-A and hepatitis-B Vaccine Candidates

, , , , &
Pages 229-235 | Received 01 May 2006, Accepted 30 May 2006, Published online: 09 Dec 2008
 

Abstract

DNA vaccination with mammalian-expressible plasmid DNA encoding protein antigens is known to be an effective means to elicit cell-mediated immunity, sometimes in the absence of a significant antibody response. This may be contrasted with protein vaccination, which gives rise to antibody responses with little evidence of cell-mediated immunity. This has led to considerable interest in DNA vaccination as a means to elicit cell-mediated immune responses against conserved viral antigens or intracellular cancer antigens, for the purpose of therapeutic vaccination. However, almost all current vaccines are used prophylactically and work by producing antibodies rather than cell mediated immune responses. In the present study we have therefore explored the combination of DNA and protein forms of an antigen using two exemplary prophylactic vaccine antigens, namely inactivated influenza virion and hepatitis-B surface antigen. We studied the effects of various combinations of DNA and protein on the antibody response. Co-administration of soluble forms of DNA and protein representations of the same antigen gave rise to the same level of antibody response as if protein were administered alone. In contrast, we found that when these antigens are entrapped in the same liposomal compartment, that there was a strong synergistic effect on the immune response, which was much greater than when either antigen was administered alone, or in various other modes of combination (e.g. co-administration as free entities, also pooled liposomal formulations where the two materials were contained in separate liposomal vehicles in the same suspension). The synergistic effect of liposomally co-entrapped DNA and protein exceeded, markedly, the well known adjuvant effects of plasmid DNA and liposomes. We have termed this new approach to vaccination ‘co-delivery’ and suggest that it may derive from the simultaneous presentation of antigen via MHC class-I (DNA) and MHC class-II (protein) pathways to CD8+ and CD4+ cells at the same antigen presenting cell – a mode of presentation that would commonly occur with live viral pathogens. We conclude that co-delivery is a very effective means to generate protective antibody responses against viral pathogens.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,410.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.