72
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Hemoglobin-vesicles for a Transfusion Alternative and Targeted Oxygen Delivery

&
Pages 227-235 | Received 31 May 2007, Accepted 06 Jun 2007, Published online: 09 Dec 2008
 

Abstract

Hb-vesicles (HbV) are artificial oxygen carriers that encapsulate purified Hb solution (35 g/dl) in unilamellar phospholipid vesicles (liposomes). The dispersion stability of HbV is attained using surface-modification with polyethylene glycol (PEG), so that the deoxygenated HbV can be stored at room temperature for years. Moreover, the intravenously injected HbV does not induce aggregation when contacted with blood components. Animal experiments have verified the safety and efficacy of HbV as a transfusion alternative. One advantage of HbV is that the O2 affinity (P50) of HbV can be regulated easily to that of RBC (28 torr) and to other values by manipulating the amount of the allosteric effectors, such as pyridoxal 5′-phosphate, coencapsulated in HbV. It is possible that HbV with a lower P50 (higher O2 affinity) would retain O2 in the normal tissue while unloading O2 to a targeted hypoxic tissue. Small HbV (250–280 nm diameter) is distributed homogeneously in the plasma phase, and HbV would transport oxygen through collateral arteries in the ischemic tissues. Results of in vitro and in vivo experiments of the domestic and international collaborations have confirmed the possibility of targeted O2 delivery by HbV.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,410.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.