186
Views
26
CrossRef citations to date
0
Altmetric
Research Articles

Potential role of resveratrol-loaded elastic sorbitan monostearate nanovesicles for the prevention of UV-induced skin damage

& ORCID Icon
Pages 45-53 | Received 05 Dec 2018, Accepted 02 Feb 2019, Published online: 07 Mar 2019
 

Abstract

This study was aiming to improve the effect of the water-insoluble drug, resveratrol, by encapsulating it in surfactant-based elastic vesicles (spanlastics). Spanlastics (SLs) were prepared by thin film hydration method using different ratios of Span 60 (S60) and edge activators (EAs). The prepared SLs were subjected to full in-vitro evaluation. All the SLs showed improved properties compared to the drug suspension (p < 0.05). SL5 composed of S60: Brij 35 (7:3) attained the highest drug entrapment efficiency (79.10%±5.56), the smallest particle size (201.30 nm ± 2.45), the best in-vitro anti-oxidant effect and a fast drug release pattern, thus was selected for further investigation. Based on the Draize test, the selected spanlastics (SL5), as well as the drug suspension, showed to be safe to be applied on the skin (PII <2). In-vivo studies were done to test the photoprotective effect of the designed nanovesicles compared to the drug suspension. Evaluation was done based on visual examination and analysis of some anti-oxidant markers (CAT, GSH and SOD), anti-inflammatory markers (IL-6, IL-8 and NF-κB) and anti-wrinkling markers (MMP-1 and GM-CSF) after UVB-irradiation. The drug showed a good prophylactic effect, however, that of SL5 was superior compared to that of the drug suspension as recorded by the level of all biochemical markers (p < 0.05). These results were also confirmed by histopathological examination. This study proves that elastic nanovesicles seem to be a promising approach to overcome the low drug solubility and to improve its efficacy.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The authors would like to thank the National Research Centre (NRC), Egypt, for financial support [project number AR110207].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,410.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.