183
Views
0
CrossRef citations to date
0
Altmetric
Article

The effect of acute dissociation on the electrophysiological properties of rat dorsal root ganglion neurons

&
Pages 11-17 | Received 20 Sep 2017, Accepted 06 Feb 2018, Published online: 23 Feb 2018
 

Abstract

The acutely dissociated neurons from the dorsal root ganglia (DRGs) are extensively used. The effects of acute dissociation on the properties of these neurons are, however, not clear. In this study, the action potentials (APs) were recorded from both acutely dissociated and in vivo identified DRG neurons with patch clamp and sharp electrode recording techniques, respectively. We found that acute dissociation slowed both the depolarizing and repolarizing rate of APs, and elongated the AP duration (APD). The lower recording temperature presented in the acutely dissociated neurons contributed to about 10% of these differences. The major contributor of these differences was possibly modulation of the mRNA expression especially those of the ion channels, as suggested by our observation that acute dissociation significantly reduced the mRNA abundance of Nav1.6–1.9. In conclusion, acute dissociation altered the electrophysiological properties of the DRG neurons; the disrupted gene-expression pattern may contribute to this effect.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work is supported by grants from National Nature Science Foundation of China [NSFC Grant Nos.: 81100818 and 30670854] sponsored to Dr Linlin Gao.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 711.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.