918
Views
0
CrossRef citations to date
0
Altmetric
Articles

Testing the applicability of a virtual reality simulation platform for stress training of first responders

, , ORCID Icon, & ORCID Icon
Pages 182-196 | Received 19 Jun 2020, Accepted 05 Jan 2021, Published online: 26 Apr 2021
 

ABSTRACT

The current study explores whether different stressors in a virtual reality (VR) military training scenario cause increases in physiological stress. This would validate the use of VR simulation for stress training, as well as the physiological monitoring of trainees for educational purposes. Military cadets (n = 63) performed a patrol scenario (military convoy) in which they answered questions about their surroundings. Stressors (task difficulty, noise, lighting changes, social evaluations, electric muscle stimulation, and a simulated attack on the convoy) were stepwise added in four phases. Electrocardiogram, blood pressure, electrodermal activity, cortisol, and the cadets’ subjective threat/challenge appraisal were measured. We found that only the first phase caused a significant increase in physiological stress, as measured with heart rate, heart rate variability, and electrodermal activity. Physiological stress appeared to stay high in the second phase as well, but decreased to baseline level in the third and fourth phases, even though these phases were designed to be the most stressful. Cadets classified as threat responders based on physiological data (n = 3) scored significantly higher on subjective threat/challenge appraisal than those classified as challenge responders (n = 21). It seems that in the tested VR training scenario, the novelty of the scenario was the only effective stress stimuli, whereas the other implemented stressors did not cause a measurable physiological response. We conclude that if VR training scenarios are to be used for stress training, these should confront trainees with unpredictable but context-specific demands.

Acknowledgments

We want to thank Rudy Boonekamp for his technical support during the experiment and the development of the RDP+ simulation environment. We also want to thank Pierre J.L. Valk for providing indispensable advice and his inspiring support during this research project.

Disclosure statement

No potential conflict of interest was reported by the authors.

Notes

1. The N-N intervals are the R-R intervals minus the intervals that are caused by artifacts and ectopic beats (Shaffer, McCraty, & Zerr, Citation2014).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 53.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 584.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.