159
Views
19
CrossRef citations to date
0
Altmetric
ARTICLE

Effects of T-2 Toxin on Pacific White Shrimp Litopenaeus vannamei: Growth, and Antioxidant Defenses and Capacity and Histopathology in the Hepatopancreas

, , , , , , , , & show all
Pages 15-25 | Received 26 Jan 2016, Accepted 09 Oct 2016, Published online: 06 Feb 2017
 

Abstract

Modified–masked T-2 toxin (mT-2) formed during metabolism in edible aquatic animals may go undetected by traditional analytical methods, thereby underestimating T-2 toxicity. The effects of T-2 on growth and antioxidant capacity and histopathological changes in the hepatopancreas were studied in Pacific white shrimp Litopenaeus vannamei exposed for 20 d to 0, 0.5, 1.2, 2.4, 4.8, and 12.2 mg/kg of T-2 in their feed. The concentration of mT-2 in the hepatopancreas was detected by liquid chromatography–tandem mass spectrophotometry before and after trifluoroacetic acid (TFA) treatment that converted mT-2 to free T-2. A dose-dependent increase in mT-2 concentration was observed in the hepatopancreas. Dietary exposure to T-2 significantly decreased (P < 0.05) shrimp growth and survival rate compared with the controls. The malondialdehyde (MDA) concentration was significantly increased in shrimp exposed to feed with ≥2.4 mg/kg T-2 (P < 0.05). The antioxidant enzymes, superoxide dismutase (SOD) and glutathione peroxidase (GPx), total antioxidant capacity (T-AOC), and also glutathione (GSH) content increased in shrimp dosed with 2.4–4.8 mg/kg T-2 but declined at the highest dose (12.2 mg/kg), probably indicating an inability to cope with high concentrations of reactive oxygen species (ROS) as evident from a marked increase in MDA (P < 0.05) culminating in cellular toxicity. Histopathological changes in the hepatopancreas were dose dependent, with cell autophagy evident at the highest exposure dose. This is the first report in shrimp of a dose-dependent increase in ROS, SOD enzyme activity, and T-AOC at low T-2 exposures, and associated histopathological changes in the hepatopancreas, in response to dietary T-2.

Received January 26, 2016; accepted October 9, 2016 Published online February 6, 2017

ACKNOWLEDGMENTS

This study was supported financially by the National Natural Science Foundation of China (NSFC) (numbers 31171634, 31371777, and 31200014), the Science and Technology Planning Project of Guangdong Province (number 2014B020205006), the Guangdong Oceanic and Fishery Administration Project (Guangdong Fiscal Government on Agriculture [2015] number 115), an Enhancing Innovation School Project of Guangdong Ocean University (numbers 2013050205, 2014050203, and GDOU2013050312), and a Shenzhen Technology Research and Development Foundation Project (GCZX201405091631511273).

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.