290
Views
9
CrossRef citations to date
0
Altmetric
Articles

Synthesis and characterization of the biodegradable and elastic terpolymer poly(glycolide-co-L-lactide-co-ϵ-caprolactone) for mechano-active tissue engineering

, , , &
Pages 386-397 | Received 03 Feb 2012, Accepted 11 Apr 2012, Published online: 13 Aug 2012
 

Abstract

We synthesized a series of tri-component biodegradable copolymers with elastic characteristics by ring-opening copolymerization of cyclic lactones, that is, glycolide, L-lactide, and ϵ-caprolactone, in the presence of stannous octoate as a catalyst. We evaluated the physical and chemical characteristics of poly(glycolide-co-L-lactide-co-ϵ-caprolactone) (PGLCL) copolymers. The synthesized PGLCL had a high molecular weight of about 100 kD and an amorphous structure. It was confirmed that the physical and chemical properties of these terpolymers could be modulated by adjusting copolymer composition. PGLCL films exhibited rubber-like elasticity and showed almost complete recovery when subjected to 50% of the tensile strain. To examine the biodegradability of the PGLCL copolymers, we performed in vitro degradation tests for 12 weeks and observed changes in molecular weight, gross weight, and composition. These results showed that the glycolide was degraded most quickly and that ϵ-caprolactone was the slowest to degrade. Additionally, cytotoxicity tests revealed that none of the polymers were toxic. In summary, the mechanical properties and biodegradability of PGLCL terpolymers could be controlled by changing the monomer content, which may be useful for a wide range of tissue engineering applications based on mechanical property requirements.

Acknowledgment

This study was supported by grants from the Korea Healthcare Technology R&D Project, Ministry of Health and Welfare (MOHW), Republic of Korea (A110962 and A110328).

Notes

These authors contributed equally to this study.

aCalculated from 1H NMR.

bMeasured using GPC.

aCalculated from 1H NMR

bMeasured using GPC

aMonomer feed.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 503.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.