374
Views
18
CrossRef citations to date
0
Altmetric
Articles

Surface modification of polydimethylsiloxane with a covalent antithrombin–heparin complex to prevent thrombosis

, , &
Pages 786-801 | Received 13 Jan 2014, Accepted 20 Mar 2014, Published online: 15 Apr 2014
 

Abstract

To prevent coagulation in contact with blood, polydimethylsiloxane (PDMS) was modified with an antithrombin–heparin (ATH) covalent complex using polyethylene glycol (PEG) as a linker/spacer. Using NHS chemistry, ATH was attached covalently to the distal chain end of the immobilized PEG linker. Surfaces were characterized by contact angle and X-ray photoelectron spectroscopy; attachment was confirmed by decrease in contact angles and an increase in nitrogen content as determined by X-ray photoelectron spectroscopy. Protein interactions in plasma were investigated using radiolabeled proteins added to plasma as tracers, and by immunoblotting of eluted proteins. Modification of PDMS with PEG alone was effective in reducing non-specific protein adsorption; attachment of ATH at the distal end of the PEG chains did not significantly affect protein resistance. It was shown that surfaces modified with ATH bound antithrombin selectively from plasma through the pentasaccharide sequence on the heparin moiety of ATH, indicating the ability of the ATH-modified surfaces to inhibit coagulation. Using thromboelastography, the effect of ATH modification on plasma coagulation was evaluated directly. It was found that initiation of coagulation was delayed and the time to clot was prolonged on PDMS modified with ATH/PEG compared to controls. For comparison, surfaces modified in a similar way with heparin were prepared and investigated using the same methods. The data suggest that the ATH-modified surfaces have superior anticoagulant properties compared to those modified with heparin.

Acknowledgments

Dr Anthony Chan holds a McMaster Children’s Hospital/Hamilton Health Sciences Foundation Chair in Pediatric Thrombosis and Haemostasis. We thank Dr Helen Chan for her critical evaluation of the manuscript.

Funding

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 503.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.