244
Views
8
CrossRef citations to date
0
Altmetric
Articles

Drug co-loading and pH-sensitive release core–shell nanoparticles via layer-by-layer assembly

, , , &
Pages 1573-1589 | Received 03 Apr 2014, Accepted 15 May 2014, Published online: 23 Jun 2014
 

Abstract

Multifunctional core–shell nanoparticles are widely used for biomedical and catalytic applications. In this work, bilayers of chitosan (Cs) and phosphorylated polyvinyl alcohol (PPVA) were sequentially deposited on 3-Aminopropyltri-ethoxysilane-modified SiO2 nanoparticles via layer-by-layer electrostatic self-assembly. The good spherical shape and size distribution were observed by DLS and transmission electron microscope analysis. 7-Hydroxycoumarin (7-HC) and rhodamine B (RhB) as model drugs were loaded in the core and shell of the nanoparticles separately. Confocal laser scanning microscopy shows the core–shell structure of HC-SiO2(PPVA/Cs)n-RhB nanoparticles and the embedded location of 7-HC and RhB. The pH-sensitive release investigation of RhB indicates that the release profiles of RhB from HC-SiO2(PPVA/Cs)3PPVA-RhB core–shell nanoparticles are totally different at pH values of 2.0, 7.4, and 9.2. These results predict that the multifunctional nanoparticle SiO2(PPVA/Cs)n has a great potential for drug delivery.

Funding

This work is supported by the National Nature Science Foundation of China [grant number 51073119], [grant number 31271016]; Ministry of Science and Technology of China [grant number 2013DFG52040].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 503.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.