145
Views
6
CrossRef citations to date
0
Altmetric
Articles

Enhancing the efficacy of fluocinolone acetonide by encapsulating with PLGA nanoparticles and conjugating with linear PEG polymer

, & ORCID Icon
Pages 1188-1211 | Received 03 Apr 2019, Accepted 28 May 2019, Published online: 19 Jun 2019
 

Abstract

Fluocinolone acetonide (FA), a glucocorticoid is used to treat inflammation in the posterior segment of the eye. Due to short half-life and body clearance, it will not be able to give therapeutic effect for long time with a single injection. Formulating FA nanoparticles (NPs) or PEG conjugates can be an effective way to overcome these disadvantages. We prepared two formulations, FA loaded in PLGA nanoparticles (NPs-FA) and FA conjugated to linear PEG (PEG-FA). The NPs-FA were characterised for size and zeta potential using particle size analyser and shape and morphology by using scanning electron microscope (SEM). The amount of drug loaded per mg of NPs and in-vitro release of FA from NPs were calculated using reverse phase high pressure liquid chromatography (RP-HPLC). NPs synthesis was optimized with factorial and Response Surface Methodology (RSM). Chemically synthesized PEG-FA conjugates were characterized using H-NMR and purity of the conjugate was analysed using RP-HPLC. Visualization of cellular uptake of NPs was done by coumarin-6 loaded NPs under fluorescent microscope. RAW 264.7 macrophages were treated with NPs-FA and PEG-FA conjugates to study their effectiveness in inhibiting TNF-α levels compared to free FA treatment. Stability test confirmed that FA is more stable within NPs than in free form. Particle size and zeta potential were found to be 183.6 ± 12.47nm and −25.6 ± 4.4mV, respectively. 149.58 ± 11.3µg of FA was encapsulated per mg of NPs and 61 µg of FA was present per mg of PEG-FA conjugate. In vitro drug release study showed a sustained release of FA from the NPs for a period of 30 days. Fluorescent microscope images showed uptake of NPs by RAW 264.7 cells. TNF-α assay confirmed that substantial inhibition of TNF-α levels from both formulations compared to free FA. From the results, we conclude that new formulations will greatly reduce drug dosage and frequency of administration for long term treatment of inflammation in posterior part of the eye.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This research was partially supported by VISION GROUP ON SCIENCE AND TECHNOLOGY (VGST), Karnataka Fund for Improvement of Science and Technology Infrastructure (K-FIST LEVEL 1 GRD 267) funded by Department of Information Technology, Biotechnology & Science and Technology, Government of Karnataka, India. We thank Dr. Sushruta Hakkimane for her help in getting fluorescent microscope and SEM images.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 503.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.