333
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Transdermal delivery of buprenorphine from reduced graphene oxide laden hydrogel to treat osteoarthritis

, , , &
Pages 874-885 | Received 23 Dec 2020, Accepted 13 Jan 2021, Published online: 11 Feb 2021
 

Abstract

The patients with chronic pain in osteoarthritis often have insufficient pain relief from non-opioids analgesics. Buprenorphine is a promising molecule for symptomatic relief of chronic pain. The marketed parenteral injections and sublingual tablets have short duration of action (half-life = 2.7 h), which is not suitable to manage chronic pain. The purpose of this research was to design buprenorphine-loaded Pluronic F127-reduced graphene oxide transdermal (noninvasive) hydrogel to achieve sustained release of buprenorphine to manage chronic pain in osteoarthritis. Pluronic F127 was used to stabilize the reduced graphene oxide in hydrogel system. The characterization studies including Fourier transform infrared spectroscopy, X-ray diffraction, and Raman spectroscopy confirmed the synthesis of Pluronic F127-reduced graphene oxide from graphite. The transmission electron microscopy image showed flat nanosheets of reduced graphene oxide (rGO). The developed hydrogel showed desirable pH, viscosity, adhesiveness, hardness, and cohesiveness for transdermal application. The ex vivo release study demonstrated the ability of the Pluronic F127-reduced graphene oxide (P-rGO) hydrogel to prolong release up to 14 days, owing to the strong π–π interactions between the graphene oxide (GO) and the buprenorphine. In cold ethanol tail flick model, the GO hydrogel showed sustained analgesic effect in comparison with hydrogel without rGO. Thus, this study demonstrated the potential of using Pluronic F127-reduced graphene oxide nanocarriers to prolong local analgesia for effective management for chronic pain.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 503.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.