260
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Enhenced cell adhesion on collagen I treated parylene-C microplates

, , , , , , , ORCID Icon & show all
Pages 2195-2209 | Received 14 Jan 2021, Accepted 17 Jul 2021, Published online: 01 Aug 2021
 

Abstract

On account of unique mechanical property and inertia, parylene-C has become a promising material for microdevices especially in three-dimensional microstructures loaded with cells. However, parylene-C is not favorable for cell adhesion, and a routine procedure is to modify it with a new adhesive layer. Herein, the parylene-C substrates with or without collagen Ӏ (Col-I) coating were adopted to estimate the influence of micro-environment change on cell attachment and spreading. After modification with Col-I, cauliflower-like particles presented on the substrate surface. Contact angle was significantly decreased after Col-I modification, which suggested the surface hydrophilicity was enhanced. Furthermore, cells cultured on parylene-C surface with Col-I treatment showed increased proliferation rate and spreading areas. In order to test the adhesion strength, a series of fixed size parylene-C microplates was fabricated, and cell suspension concentration was adjusted to culture a single cell on one microplate. The microplate was folded by the autogenous shrinkage force of cell. The folding angles of parylene-C microplates with Col-I treatment exhibited higher folding angle (112.6 ± 15.6°) than untreated samples (46.7 ± 5.9°). The work proved the existence of Col-I layer was particularly important, especially in analysis of cells mechanics using parylene-C microplate as a substrate.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China (Grant no: 11632013, 11502158); Shanxi Provincial Key Research and Development Project, China (Grant no: 201803D421060); and the Natural Science Foundation of Shanxi Province, China (201901D111078, 201901D111077).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 503.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.