372
Views
1
CrossRef citations to date
0
Altmetric
Articles

Cryogenic 3D printing of modified polylactic acid scaffolds with biomimetic nanofibrous architecture for bone tissue engineering

, , , & ORCID Icon
Pages 532-549 | Received 26 Aug 2021, Accepted 21 Oct 2021, Published online: 01 Nov 2021
 

Abstract

The individualized polylactic acid (PLA) scaffolds fabricated by 3D printing technique have a good application prospect in the bone tissue engineering field. However, 3D printed PLA scaffold mainly manufactured by using a Fused Deposition Modelling fabrication technique (FDM) has some disadvantages, such as having smooth surface, strong hydrophobicity, poor cell adhesion, undesirable bioactivity, the degradation and deterioration at a high temperature triggering an inflammatory response. In this work, the aminated modified polylactic acid nanofibrous scaffold prepared by cryogenic 3D printing technology is designed to provide a feasible countermeasure to solve the key problems existing at present. The prepared scaffolds were fully characterized in terms of physico-chemical and morphological analyses, and the collected results revealed that the using of the cryogenic 3D printing technology can effectively avoid the degradation and deterioration of PLA at a high temperature required by FDM technique and promote the formation of nanofibrous structures. The in vitro tests with MC3T3-E1 cells confirmed that the cell-responsive biomimetic fibrous architecture and improved hydrophilicity due to the introduction of hydrophilic active amino groups provided a bioactive interface for cell adhesion and growth. Meanwhile, the active amino groups introduced by ammonolysis reaction can act as active sites for biomineralization. Thus, the as-prepared scaffolds may hold great potential for bone tissue engineering applications.

Additional information

Funding

This work was financially supported by the National Natural Science Foundation of China (21805037), Fujian Provincial Health and Education Project for Tackling the Key Research (2019-WJ-22), Natural Science Foundation of Fujian Province (2020J02033), Fuzhou Science and Technology Project (2020-PT-138).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 503.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.