297
Views
5
CrossRef citations to date
0
Altmetric
Articles

Supramolecular nanogels based on gelatin–cyclodextrin-stabilized silver nanocomposites with antibacterial and anticancer properties

, , , &
Pages 689-704 | Received 18 Oct 2021, Accepted 18 Nov 2021, Published online: 20 Jan 2022
 

Abstract

An effective method for reducing silver ions using gelatin (Gel) and 2-hydroxypropyl-β-cyclodextrin (HPCD) hydrogels, which stabilize silver at various concentrations is described. The formation of AgNPs in solution, as well as Gel-HPCD nanogels, is confirmed by the surface plasmon resonance (SPR) band at 420–440 nm in the UV–Vis spectrum. The resulting Gel-HPCD and Gel-HPCD/AgNPs composites are characterized using various techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), and thermogravimetric analysis (TGA). SEM images showed that the porous structure and the AgNPs are homogeneously dispersed throughout the Gel-HPCD/AgNP composites network. The AgNPs in the Gel-HPCD/AgNPs composite is crystalline, with spherical particles having an average size of 7.0 ± 2.5 nm, as determined by TEM. The Gel-HPCD/AgNPs composites are strongly effective against both gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria. The assembled antibacterial Gel-HPCD/AgNPs composites are also assessed for their cytotoxic and anticancer activities using HCT-116 cancer cells. The results suggest that Gel-HPCD/AgNPs composites could be used as effective therapeutics in the future in tissue engineering applications, as their bactericidal properties and low toxicity make them ideal for clinical use.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (2021R1A2B5B02002436 and 2021R1F1A1061566).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 503.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.