508
Views
6
CrossRef citations to date
0
Altmetric
Articles

Environment friendly superhydrophobic and transparent surface coating via layer-by-layer self-assembly for antifogging of optical lenses

, , , , , , & ORCID Icon show all
Pages 847-857 | Received 19 Oct 2021, Accepted 17 Dec 2021, Published online: 31 Dec 2021
 

Abstract

The fogging of the optical lenses seriously affects the life quality and safety, which is due to the gathering of the humid air into liquid droplets on the solid surface because of the temperature change. Superhydrophobic coating modification is an effective way to repel the water from surface. However, due to the specific application requirements, the transparency of optical lenses after coating modification is still the challenge for the application of such superhydrophobic coatings. In this work, a superhydrophobic and transparent surface coating was fabricated by the layer-by-layer self-assembly followed with fluorination. After poly(sodium 4-styrenesulfonate) and poly(allylamine hydrochloride) (PAH) multilayer precoating was generated on the surface, the different bilayers of SiO2 nanoparticles in different particle sizes and PAH multilayers were fabricated. The obtained polyelectrolytes-nanoparticle multilayers were fluorinated by a fluorinating agent. Such polyelectrolytes-nanoparticle multilayered coating renders obvious micro-nano composite structure, showing excellent superhydrophilicity, whereas such coating modified eyeglasses keeps excellent light transparency. The results of antifogging and defogging test also proved that the eyeglass modified with this coating had good antifogging and defogging performance. Therefore, such polyelectrolytes-nanoparticle multilayered coating with excellent superhydrophobic and transparent properties might provide a feasible approach for the practical antifogging application of optical lenses.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was financially supported by the National Natural Science Foundation of China (81771984) and the Key Scientific and Technological Innovation Projects in Wenzhou (ZY2021002).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 503.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.