286
Views
2
CrossRef citations to date
0
Altmetric
Articles

Platelet-biomimetic nanoparticles for in vivo targeted photodynamic therapy of breast cancer

, &
Pages 1383-1397 | Received 10 Jan 2022, Accepted 20 Mar 2022, Published online: 28 Mar 2022
 

Abstract

Nanocarrier-based photodynamic therapy (PDT) has emerged as a promising treatment in cancer therapy. However, the PDT therapeutic efficacy is limited by the lack of specificity, limited intracellular cytotoxic reactive oxygen species (ROS) generation, and the immunosuppressive tumor microenvironment. Herein, a platelet membrane (Pm) decorated and chlorin e6 loaded liposome (Pm/Lps/Ce6) is developed to improve specific tumor-targeting capability and antitumor responses. Pm/Lps/Ce6 could efficiently improve the cellular internalization of Ce6. Under 660-nm laser irradiation, enough ROS was produced to suppress the growth of tumor cells in vitro. In vivo, the Pm decoration increased cellular uptake of the Ce6 loaded liposome in cancer cells by the tumor-targeting and immune escape capacity and produced a satisfactory inhibitory effect on breast cancer. Our study provides a biomimetic strategy via the biological properties of Pm to improve the antitumor performance of photodynamic therapy for treating breast cancer.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the Scientific Development Program of Jilin Province (No. 202005260253LK).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 503.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.