180
Views
0
CrossRef citations to date
0
Altmetric
Articles

Construction of polysaccharide scaffold-based perfusion bioreactor supporting liver cell aggregates for drug screening

, , , , &
Pages 2249-2269 | Received 12 May 2022, Accepted 14 Jul 2022, Published online: 26 Jul 2022
 

Abstract

Rebuilding a suitable microenvironment of liver cells is the key challenge to enhancing the expression of hepatic functions for drug screening in vitro. To improve the microenvironment by providing the specific adhesive ligands for hepatocytes in the three-dimensional dynamic culture, a perfusion bioreactor with a pectin/alginate blend porous scaffold was constructed in this study. The galactosyl component in the main chain of pectin was able to be specifically recognized by the asialoglycoprotein receptor on the surface of hepatocytes, and subsequently promoted the adhesion and aggregation of hepatocytes co-cultured with hepatic non-parenchymal cells. The bioreactor was optimized for 4 h of dynamic inoculation followed by perfusion at a flow rate of 2 mL/min, which provided adequate oxygen supply and good mass transfer to the liver cells. During dynamic cultured in the bioreactor for 14 days, more multicellular aggregates were formed and were evenly distributed in the pectin/alginate blend scaffolds. The expressions of intercellular interaction and hepatic functions of the hepatocytes in aggregates were significantly enhanced in the three-dimensional dynamic group. Furthermore, the bioreactor not only markedly upregulated the cell polarity markers expression of hepatocytes but also enhanced their metabolic capacity to acetaminophen, isoniazid, and tolbutamide, which exhibited a significant concentration-dependent manner. Therefore, the pectin/alginate blend scaffold-based perfusion bioreactor appeared to be a promising candidate in the field of drug development and liver regeneration research.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The authors gratefully acknowledge financial support from the Youth Science Fund of the Nature Science Foundation of Tianjin (Grant No. 20JCQNJC01370), the National Key Research and Development Program of China (Grant No. 2020YFA0710802, 2020YFA0710800), the National Natural Science Foundation of China (Grant No. 32071364), and the Zhejiang Provincial Natural Science Foundation of China (LY19H030004).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 503.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.