89
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Design of oleic acid/alkyl glycoside composite vesicles as cosmetics carrier: stability, skin permeability and antioxidant activity

, , , , , & show all
Pages 579-604 | Received 22 Nov 2023, Accepted 29 Dec 2023, Published online: 13 Jan 2024
 

Abstract

Biocompatible fatty acids are natural biological materials which exhibit widespread biomedical applications. Nevertheless, their application in vesicle forms is hampered by strong pH sensitivity and poor stability to changes in ionic strength, temperature, and storage. In the investigation, the incorporation of alkyl glycoside (APG), a surfactant with non-ionic properties, into the oleic acid (OA) vesicles was undertaken as a means to address this issue. The newly formed OA/APG composite vesicles form in a pH range of between 5.4 and 7.4, which is close to the pH range of the physiological environment. The stability studies results showed that the OA/APG composite vesicles have excellent stability in terms of ionic strengths, temperature and storage. The formation of NAR-loaded OA/APG composite vesicles was demonstrated through FT-IR, DSC and XRD. In vitro topical delivery and skin retention studies confirmed that the composite vesicles improve skin permeation rate and have better skin permeation behavior. Antioxidant activity experiments confirmed that the antioxidant effect composite vesicles were significantly increased as compared to the naringenin (NAR). This finding has theoretical implications for the use of drug-loaded fatty acid vesicles in cosmetics industries and topical delivery systems.

Acknowledgments

We gratefully acknowledge the support of the School of Pharmacy, Jiamusi University and Heilongjiang Huahao Testing Technology Service Co., Ltd, for providing instruments and reagents.

Disclosure statement

There are no conflicts to declare.

Additional information

Funding

This research was funded by the Heilongjiang Province key research and development plan project (JD22A016), Heilongjiang Province “Double first-class” discipline collaborative innovation achievement construction project (LJGXCG2022-126), Basic Scientific Research Project for Heilongjiang Provincial Colleges and Universities (2022-KYYWF-0609), Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation Open Fund Project (kfkt2023-09).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 503.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.