0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Preparation of an anticoagulant polyethersulfone membrane by immobilizing FXa inhibitors with a polydopamine coating

, , , , , & ORCID Icon show all
Received 15 Jan 2024, Accepted 18 Jul 2024, Published online: 31 Jul 2024
 

Abstract

Anticoagulation treatment for patients with high bleeding risk during hemodialysis is challenging. Contact between the dialysis membrane and the blood leads to protein adsorption and activation of the coagulation cascade reaction. Activated coagulation Factor X (FXa) plays a central role in thrombogenesis, but anticoagulant modification of the dialysis membrane is rarely targeted at FXa. In this study, we constructed an anticoagulant membrane using the polydopamine coating method to graft FXa inhibitors (apixaban and rivaroxaban) on the membrane surface. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to characterize the membranes. The apixaban- and rivaroxaban-modified membranes showed lower water contact angles, decreased albumin protein adsorption, and suppressed platelet adhesion and activation compared to the unmodified PES membranes. Moreover, the modified membranes prolonged the blood clotting times in both the intrinsic and extrinsic coagulation pathways and inhibited FXa generation and complement activation, which suggested that the modified membrane enhanced biocompatibility and antithrombotic properties through the inhibition of FXa. Targeting FXa to design antithrombotic HD membranes or other blood contact materials might have great application potential.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was financially sponsored by the Natural Science Foundation of Hunan Province (grant number 2021JJ41022) and the National Key R&D Program of China (grant number 2020YFC2005000 to XX).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 503.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.