142
Views
12
CrossRef citations to date
0
Altmetric
Articles

Sierpinski carpet fractal-based planar array optimization based on differential evolution algorithm

, , &
Pages 247-260 | Received 22 May 2014, Accepted 04 Dec 2014, Published online: 08 Jan 2015
 

Abstract

This paper considers fractal-based antenna array optimization using differential evolution algorithm (DEA). The proposed optimization technique of planar fractal array is based on Sierpinski carpet fractal array concept. Generally, fractal arrays like Sierpinski carpet may suffer from increased peak side lobe level (PSLL), as well as complex array factor computation that isolates it from the application of any evolutionary optimization techniques. Based on Sierpinski carpet array, a novel iterative feed matrix is proposed, whose inclusion eases the computation complexity of Sierpinski fractal array at different stages of growth and make them suitable for the application of any evolutionary optimization techniques. Thus, a novel method to compute Sierpinski carpet array factor has been proposed and DEA has been applied for element reduction as well as PSLL minimization of original Sierpinski carpet-patterned array at different stages of growth. The optimized version of Sierpinski carpet array produces lower PSLL with reduced radiating elements than its original counterpart.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.