145
Views
1
CrossRef citations to date
0
Altmetric
Articles

ENG-cladded metamaterial-loaded helical waveguide for optoelectronics applications

&
Pages 2501-2511 | Received 17 Mar 2015, Accepted 10 May 2015, Published online: 16 Jun 2015
 

Abstract

In this article, we have studied propagation characteristics of ENG-cladded metamaterial-loaded helical waveguide (CMLHG) to control its slow-wave behaviour for various engineering applications such as realizing optical buffer and memory. An analytical equation has been derived and computed numerically to analyse its dispersion characteristics in THz frequency spectrum. Significant amount of phase velocity reduction is achieved in comparison with the helical guide when (i) it is in free space and not cladded and (ii) when it is cladded with doubly positive materials and loaded with metamaterial. We find that helical waveguide physical dimensions, mainly radius and pitch angle, act as a tuning tool to control the phase velocity. This type of waveguide does not require any active waveguide compensation in order to achieve slow wave at THz to optical frequency range. The electric field intensity distribution over the cross section of the waveguide has also been studied which attributes that as frequency increases, electric field distribution is more confined to the core region of the waveguide.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.