106
Views
0
CrossRef citations to date
0
Altmetric
Articles

Determination of constitutive equations dependent on temperature changes for dielectric materials having micro-voids

, &
Pages 505-522 | Received 26 Jun 2015, Accepted 18 Nov 2015, Published online: 12 Feb 2016
 

Abstract

A damage constitutive model based on continuum damage mechanics (CDM) is proposed to investigate the electro-thermomechanical behavior of a thermoelastic dielectric structure in the present paper. The solid medium is assumed to be dielectric, incompressible, homogeneous, dependent on temperature gradient, having micro-voids, and showing linear elastic behavior. The matrix material made of elastic material involving an artificial anisotropy due to the existence of micro-voids has been assumed as an isotropic medium. Damage is incorporated by two symmetric, second-rank, tensor-valued, internal state variables which represent the total areas of “active” and “passive” voids contained within a representative volume element. Using fundamental concepts of continuum electrodynamics, CDMs and irreversible thermodynamics, the constitutive functionals have been obtained. It has been detected as a result of the thermodynamic constraints that stress potential function depends on two symmetric tensors and a vector, whereas the heat flux vector function depends on two symmetric tensors and two vectors. Since the matrix material has been assumed as an isotropic medium, the constitutive equations based on the constitutive functionals, which are stress potential and heat flux vector, have been obtained using the theory of invariants. Finally, the constitutive equations belonging to symmetric stress, polarization field, asymmetric stress, heat flux vector, and strain energy density release rate have been written in terms of material coordinate description.

Acknowledgments

The authors express their thanks to the anonymous referee(s) who kindly provided the suggestions and comments to improve the quality of the paper. The authors are also grateful to the editor Professor Pankaj Kumar Choudhury for his editorial helping.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.