103
Views
1
CrossRef citations to date
0
Altmetric
Articles

Fast frequency sweep of metallic antennas using frequency-independent reaction and enhanced gap source model

, &
Pages 1093-1100 | Received 08 Dec 2016, Accepted 24 May 2017, Published online: 15 Jun 2017
 

Abstract

In this paper, the enhanced gap source model is combined with the frequency-independent reaction(FIR)-MoM to analyze the input impedance of the metallic antenna over a wide frequency band. The enhanced gap source model is a simple feeding model, which can overcome the instability of the gap source model. Thus, the stable results can be obtained. In the FIR-MoM, the exponential of the Green’s function is expanded as Taylor series in terms of the distance between the centers of the testing and source functions. The impedance matrix is expressed as the summation, in which each term is the multiplication of the frequency-independent matrix and the frequency-dependent phase term. The frequency-independent matrices are computed before the frequency sweep. Thus, the efficiency of the FIR is very high. The impedance matrix can be efficiently generated when the FIR is used for frequency sweep. The FIR-MoM is suitable for the whole frequency range. Moreover, the precision can be dynamically improved. By combining these two techniques, the stable results over a wide frequency range can be efficiently obtained. To test the accuracy and efficiency of the proposed method, two numerical examples are implemented. Numerical results validate the accuracy and the efficiency.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.