178
Views
1
CrossRef citations to date
0
Altmetric
Articles

A parametric model of NIR and SWIR reflectance spectra for dyed fabrics

, &
Pages 1508-1519 | Received 28 Feb 2017, Accepted 29 Jun 2017, Published online: 20 Jul 2017
 

Abstract

This study describes a parametric model of diffuse reflectance for the purpose of simulating the spectral response of near-infrared (NIR, 0.7–0.9 μm) and shortwave infrared (SWIR, 0.9–1.7 μm) absorbing dyes for minimizing NIR-SWIR reflectance of dyed fabrics. This model is purely phenomenological, but is optimal with respect to numbers of parameters. This model establishes ground-work for development of a prediction tool, which when given the constituent materials available, will enable rapid optimization of NIR/SWIR band contrast matching of composite systems, (e.g. uniforms and ancillary gear) for a given specification of NIR-SWIR reflectance. This model adopts absorption coefficients for NIR/SWIR absorbing dyes whose absorption spectra span the NIR/SWIR spectral range. Military camouflage fabric consisting of 50/50 nylon/cotton blend in a ripstop weave printed with four-color digital pattern was used as the test substrate for NIR/SWIR dye application. The results of this study provide validation of the parametric model within reasonable error, for practical applications including simulating NIR/SWIR spectral responses corresponding to fixed dye and dye blend concentrations in prototype camouflage fabrics.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.